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A TESTING EXAMPLE FOR POSITIONAL 
ANALYSIS TECHNIQUES * 

M.G. EVERETT ** 
Thames Polytechnic 

Steve BORGATTI + 
University of South Carolina 

In trying to assess the validity of formal definitions of positional analysis it is necessary to have 
certain standard test data. The mathematical literature contains a large collection of important 

graphs specifically constructed as counter-examples to conjectures. We show that one of these 

graphs is useful in understanding the workings of certain positional analysis techniques. 

1. Introduction 

There are now a number of formal definitions together with practical 
algorithms which try and capture the concept of role in social networks. 
Recently articles have been appearing which try to examine the various 
different ideas by comparing their performance on real and hypotheti- 
cal data (Faust 1988; Doreian 1988a, 1988b). 

Practical algorithms are usually constructed by relaxing the formal 
conditions of the strict definition in some way. This allows a greater 
aggregation than would have been possible by simply applying the 
concepts directly in their rigid form. The relationship of the relaxed 
algorithmic formulation to the original definition is of course of prime 
importance in understanding any positional analysis of real data. 
However, it is of fundamental importance that the formal definition 
correctly captures our concept of positional analysis. To test whether 
this is the case we must test the definitions on artificially constructed 
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data where the role structure is obvious. In the articles cited above the 
authors have taken this approach and have also considered various 
methods on well-structured real data sets. Unfortunately it can be 
difficult to think of examples which are sufficiently demanding so as to 
provide insight into the performance of the various definitions. Com- 
monly, researchers use a tree to represent some hierarchical organisa- 
tion and their comparisons are based on how each method copes with 
this simple structure. Whilst it is true that any concept of positional 
analysis should be able to cope with a tree (failure in this case should 
be sufficiently damning to reject the concept) it should not be grounds 
for embracing the definition as successful. The thrust of positional 
analysis techniques should be highlighted by the term “position”; 
actors are aggregated because of where they are in the network, not 
because they share a particular attribute. If we examine the tree 
structure we see that a number of simple concepts will easily partition 
the nodes into realistic role sets. Suppose in our hierarchical structure 
we examine the relationship of “communication with”. In a “perfect” 
organisation this should lead to an undirected tree which contains the 
same links as the formal organisational structure. In this case central- 
ity, for example, will identify workers, middle managers, managing 
directors, etc. It follows that we must consider whether a particular 
definition is aggregating because of positional concepts or because of 
some attribute such as centrality. There is nothing wrong with using 
centrality or any other attribute, provided we realise explicitly that this 
is the case and it is position with respect to this attribute that is 
required. 

Doreian (1987) suggests using centrality explicitly with REGE to 
find regular equivalences in symmetric graphs. He proposes splitting a 
symmetric relation into two asymmetric ones and submitting these to 
REGE. Each symmetric arc is replaced by a directed arc, directed from 
less central to more central in one relation and reversed in the other. 
The technique is fine as long as it is understood that the positional 
analysis is taking account of centrality. The result is simply the maxi- 
mal regular equivalence that preserves centrality. There is no compell- 
ing reason why the attribute should be centrality. Other attributes such 
as degree of eccentricity are equally commendable. Borgatti and Everett 
(1988) propose a technique which separates relations and attributes and 
allows the researcher to find the maximal regular equivalence compati- 
ble with any attribute. 
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Centrality certainly plays an important role in social network analy- 
sis, including positional analysis. It is reasonable to ask whether this 
role is fundamental, that is, a natural consequence of what positional 
analysis techniques are seeking to achieve, or simply incidental. By 
incidental we mean that the examples we deal with, both real and 
constructed, just happen (possible because they are numerous) to 
succumb successfully to techniques which employ centrality in their 
implementation. Returning directly to the Doreian technique, this 
question can be answered if we can find a graph in which everybody 
has the same centrality but there are clearly different positions within 
the network. In a simple cycle all points have the same centrality but 
they are all perfectly substitutable and consequently are playing the 
same role. It is not a simple task to find non-trivial graphs in which 
every individual has the same centrality. However, the graph in the 
next section is such a graph and we believe that it is a simple matter to 
identify two distinct positions for the vertices. The graph provides a 
tough test for any positional analysis technique and acts as a counter- 
example to a number of conjectures in the positional analysis literature. 

2. The AVLF graph 

In 1969 four soviet mathematicians found a counter-example to show 
that every distance-regular graph is not distance-transitive (for defini- 
tions see Biggs 1974). We shall call their example the AVLF graph, 
named after the authors Adelson-Velskii, Veisfeiler, Leman and 
Faradzev. In essence the AVLF graph consists of two distinct groups of 
nodes which share many combinatorial properties. Let I’ be the graph 
with the 26 vertices {a,, a,, . . . u12, b,, b,, . . . b,,} where 

ai and aj are adjacent iff (i -j) = 1, 3, 4, 9, 10, 12 (mod 13) 
bi and bj are adjacent iff (i -j) = 2, 5, 6, 7, 8, 11 (mod 13) 
ai and b, are adjacent iff (i -j) = 0, 1, 3, 9 (mod 13) 

The adjacency matrix is given in Table 1. 
Each vertex has degree 10 and the graph has diameter 2. Every 

vertex has the same centrality for all the standard centrality measures, 
i.e. betweenness, closeness, all degree-based measures, etc. In addition, 
the more revealing geodesic and dependency matrices on which these 
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Table 1 

12345678911111111112222222 

01234567890123456 

1 01011000011011000100000101 
2 10101100001101100010000010 

3 01010110000110110001000001 

4 10101011000011011000100000 

5 11010101100000101100010000 

6 01101010110000010110001000 

7 00110101011000001011000100 
8 00011010101100000101100010~ 

9 00001101010110000010110001 

10 10000110101011000001011000 
11 11000011010100100000101100 

12 01100001101010010000010110 
13 10110000110100001000001011 
14 11010000010000010011110010 
15 01101000001000001001111001 

16 00110100000101000100111100 
17 00011010000010100010011110 

18 10001101000000010001001111 
19 01000110100001001000100111 

20 00100011010001100100010011 

21 00010001101001110010001001 

22 00001000110101111001000100 

23 00000100011010111100100010 
24 10000010001100011110010001 

25 01000001000111001111001000 

26 10100000100010100111100100 

measures are built also do not show any differences in pattern between 
any pair of vertices. 

However, if we examine the first-order neighbourhoods of the a and 
b vertices, we find significant differences in structure. The first-order 
neighbourhoods (often called first-order stars) are simply the induced 
subgraphs formed by examining all vertices adjacent to a particular 
vertex. Figure 1 shows the neighbourhoods of “a” and “b” vertices 
with the central vertex removed. We note that the a’s neighbourhood 
contains one clique of 3 vertices whereas b’s neighbourhood contains 3 
cliques of 3 vertices. It should be noted that the neighbourhoods have 
the same structure for any “LZ ” or “b” vertex. It follows from this that 
the natural positional analysis partition of the vertices for the graph is 
therefore {a,, a,,. . . , Q}, {b,, b,, . . ., b,,}. 



M. G. Everett and S. Borgatti / Positional analysis techniques 257 

‘a’ Neighbourhood ‘ b’ Neighbourhood 

Fig. 1. 

The AVLF graph was submitted to all the positional analysis routines 
contained in UCINET (i.e. CONCOR, Euclidean distance, regular 
equivalences, structural equivalences and semigroup analysis). None of 
these algorithms produce the natural partition (regular equivalence fails 
since the graph is symmetric). In addition the Doreian technique fails 
to partition the vertices (since all vertices have the same centrality) and 
we conclude that centrality is not sufficient to capture the role concept. 

3. Three conjectures refuted 

Borgatti (1988) conjectures that the Doreian technique is equivalent to 
finding the orbits of a graph. An automorphism of a graph G(v, R) 
with vertex set V and edge set R is a permutation 7~ of the vertices I’ 
which has the property that (a, b) E R if and only if (a( a), 7~( b)) E R. 
The set of all automorphisms of G form a group under the operation of 
composition which is denoted by Aut( G). Two vertices a, b E I’ be- 
long to the same orbit of G if and only if ~(a) = b for some r E Aut( G). 
The orbits of the AVLF graph are {a,, a,, . . . , Q}, {b,, b,, . . . , b,,}. 
Since the Doreian technique fails to split the vertex set, the graph acts 
as a counter-example to this conjecture. It is also interesting to note 
that the algorithm proposed by Everett and Borgatti (1988) does find 
the orbits and hence is the only positional analysis technique which 
produces the natural partition of the graph. 
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Winship (1988) has recently published his often cited previously 
unpublished manuscript of 1974 “Thoughts about Roles and 
Relations”. The paper contains a number of conjectures, two of which 
can be refuted by the AVLF graph. Let G(V, R) be a graph with n 
vertices and adjacency matrix A. If i, j E v then the relational column 
rc(i, j) of vertex i with j is the countably infinite vector rc(i, j) = 
(Aij, Af,, A;], . ..). 

The relational plane rp( i) of a vertex i is the infinite matrix 
rp(i) = (rc(i, l), rc(i, 2) ,..., rc( i, n)). Two vertices are congruent if their 
relational planes are equal to within a permutation of their columns. 
Winship’s first conjecture is that two vertices belong to the same orbit 
if and only if they are congruent. (In his 1988 paper he adds a footnote 
to say that he believes the conjecture to be false, but does not provide a 
counter-example). 

If two vertices belong to the same orbit they must have perfect 
substitutability and hence it follows that they are congruent; however, 
the converse is false. If we examine increasing powers of A it becomes 
apparent that for any power the entries consist of three different 
numbers. There is one value on the diagonal, a different value corre- 
sponding to adjacent vertices and a third value for non-adjacent 
vertices. It follows that each vertex has non-trivial relational columns 
(we ignore the column rc(i, i)), one corresponding to those that the 
vertex is adjacent to and those for which it is not adjacent. From this it 
follows that all the vertices are congruent and consequently, as antic- 
ipated by Winship, the conjecture is false. 

In the same paper Winship gives the following definition. Two 
vertices a, b are automorphically equivalent with respect to c if and 
only if there exists an automorphism 7~ such that ~(a) = b and 
r(c) = c. He conjectures that if rc(i, j) = rc(i, k) then j and k are 
automorphically equivalent with respect to i. (Also in the later paper he 
states he believes the conjecture to be false). It is a simple matter to see 
that the conjecture is false if we take i to be an isolate and j and k any 
pair of vertices in separate orbits. In this case rc( i, j) = rc( i, k) = 

(0, 0, 0, . . .) and we know that no automorphism exists which maps j 
to k. However, it may be that the conjecture assumed that the graphs 
were connected. We now give a counter-example to this conjecture. 

Let H be the AVLF graph together with an additional vertex x 
connected to each vertex of the AVLF graph. Any automorphism of 
the AVLF graph will be an automorphism of H provided r(x) = x. 
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From the comments in the previous paragraph it follows that, for 
example, rc(x, a,) = rc(x, b,,) but we know that a, and b,, are in 
different orbits and hence cannot be automorphically equivalent with 
respect to x. 

4. Conclusion 

The mathematical literature contains a wealth of examples which could 
be used by networkers to gain a better understanding of their tech- 
niques. Whilst these examples may never occur in real data they do 
provide idealised tests of formal definitions. It can be very instructive 
to search for or construct examples designed to defeat algorithms or 
definitions. These examples can clarify thinking and at the same time 
correct misconceptions. We would like to encourage researchers work- 
ing on new concepts or algorithms to make a serious attempt to defeat 
their ideas, rather than show they work in simple well-structured data. 
The network community would benefit from this approach in the long 
run. 
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